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LEAST-SQUARES REGRESSION

Thus, the intercept, log as, equals —0.300, and therefore, by taking the antilogarithm, as =
1093 = 0.5. The slope is f, = 1.75. Consequently, the power equation is

¥ =055

This curve, as plotted in Fig. 17.10a, indicates a good fit.

17.2

17.1.6 General Comments on Linear Regression

Before proceeding to curvilinear and multiple linear regression, we must emphasize the
introductory nature of the foregoing material on linear regression. We have focused on the
simple derivation and practical use of equations to fit data. You should be cognizant of
the fact that there are theoretical aspects of regression that are of practical importance but
are beyond the scope of this book. For example, some statistical assumptions that are in-
herent in the linear least-squares procedures are

1. Each x has a fixed value; it is not random and is known without error.
2. The y values are independent random variables and all have the same variance.
3. The y values for a given x must be normally distributed.

Such assumptions are relevant to the proper derivation and use of regression. For ex-
ample, the first assumption means that (1) the x values must be error-free and (2) the re-
gression of y versus x is not the same as x versus y (try Prob. 17.4 at the end of the chapter).
You are urged to consult other references such as Draper and Smith (1981) to appreciate
aspects and nuances of regression that are beyond the scope of this book.

POLYNOMIAL REGRESSION

In Sec. 17.1, a procedure was developed to derive the equation of a straight line using the
least-squares criterion. Some engineering data, although exhibiting a marked pattern such
as seen in Fig. 17.8, is poorly represented by a straight line. For these cases, a curve would
be better suited to fit the data. As discussed in the previous section, one method to accom-
plish this objective is to use transformations. Another alternative is to fit polynomials to the
data using polynomial regression.

The least-squares procedure can be readily extended to fit the data to a higher-order
polynomial. For example, suppose that we fit a second-order polynomial or quadratic:

2
y=ap+ajx +ax"+e

For this case the sum of the squares of the residuals is [compare with Eq. (17.3)]

n

S,=Y (vi—a—ax; — a?)’ (17.18)

i=1
Following the procedure of the previous section, we take the derivative of Eq. (17.18) with
respect to each of the unknown coefficients of the polynomial, as in

s,

— = —22(\‘,— — ag — arx; —agxf)
dayg i
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EXAMPLE 17.5

a5,
da 1
as,
day

=-2 Exs (yi — a0 — a1x; — arx;)

=-2 Zx,z (¥ — a0 — a1x; - (1‘2.1‘,-2)

These equations can be set equal to zero and rearranged to develop the following set of nor-
mal equations:

(n)ao + (Ex,-) ar + (fo) ;=)
(Zx,-)ao i (fo) a + (fo) @=Y xy (17.19)
(fo)(m 4 (fo) a; + (fo) a = foz."i

where all summations are from { = 1 through n. Note that the above three equations are lin-
ear and have three unknowns: ag, a|, and ay. The coefficients of the unknowns can be cal-
culated directly from the observed data.

For this case, we see that the problem of determining a least-squares second-order
polynomial is equivalent to solving a system of three simultaneous linear equations. Tech-
niques to solve such equations were discussed in Part Three.

The two-dimensional case can be easily extended to an mth-order polynomial as

y=ap+ax + ax’+ - +ax" +e

The foregoing analysis can be easily extended to this more general case. Thus, we can rec-
ognize that determining the coefficients of an mth-order polynomial is equivalent to solv-
ing a system of m + 1 simultaneous linear equations. For this case, the standard error is
formulated as

S
Sopy = | ————— (17.20)
o n—im+1)

This quantity is divided by n — (m + 1) because (m + 1) data-derived coetficients—
ap, a1, . . ., a,—were used to compute S,; thus, we have lost m + 1 degrees of freedom. In
addition to the standard error, a coefficient of determination can also be computed for poly-
nomial regression with Eq. (17.10).

Polynomial Regression

Problem Statement. Fit a second-order polynomial to the data in the first two columns
of Table 17.4.

Solution.  From the given data,
m=2 Y #=15 Y xf =979
n=6 Z y; = 152.6 Zx,—}',— — 585.6

¥=25 pIe s ) xZyi =248838

y=25433 ) x} =225





